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The barotropic potential vorticity equation or topographic wave equation is not 
linear in topography: the solution structure for topography formed from a sum of 
obstacles is not the sum of solutions for the obstacles in isolation, even when these 
individual solutions have identical frequencies. This paper considers the mechanism 
by which normal modes of oscillation above one mountain are modified by 
interactions with its neighbours. Exact explicit solutions for the normal modes above 
a pair of circular seamountains show that the interactions between the mountains 
rapidly approaches the large-separation approximation obtained by considering 
solely the first reflection of the disturbance of one mountain a t  the other. For 
mountains of one diameter separation a t  the closest point, the approximation is 
accurate to within 1 YO. Perhaps surprisingly, coupling between two identical 
mountains is weak and resonance occurs between mountains and dales of equal and 
opposite height. 

The accurate approximate solutions enable consideration of the effects on a 
mountain of an infinite set of randomly distributed neighbours. The ensemble- 
averaged frequency for a mountain of given height is determined in terms of the area 
fraction of the other mountains. The idea of an effective topography is introduced for 
the ensemble-averaged stream function : it  is that (non-random) topography 
generating a stream function identical to the ensemble-averaged stream function. 
This differs markedly from the ensemble-averaged topography. The explicit form of 
the effective topography is derived for a set of right circular cylinders. 

1. Introduction 
The early experiments of Taylor (1923) show the large effects that even small 

obstacles can cause in rapidly rotating flows. Later experiments and analysis, as 
those of Gill et al. (1986), demonstrate that the whole evolution of oceanographic 
flows can be affected by small changes in bathymetry (i.e. bottom topography). 
Topographic or planetary vorticity effects appear to be important in large-scale flows 
over anything but the flattest of ocean floors. 

A homogeneous fluid in the oceanographic limit, of slow flow (relative to rotating 
axes) over obstacles of small slope and horizontal scale of the order of the fluid depth 
or larger, is governed by the barotropic potential vorticity equation. Numerical 
integrations of the full nonlinear equation for the evolution of flow above an isolated 
seamountain are given in James (1980). Johnson (1984) shows that for large values 
of the Hide (1961) topographic parameter (S = H / R ,  where H is the fractional height 
of the seamountain and R is the Rossby number of the flow) the evolution is closely 
described by the linearized equation. In  particular, the evolution can be represented 
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as a superposition of the normal modes of the linear equation -the topographic 
Rossby waves of Rhines (1969). An isolated seamountain is, however, a poor model 
for regions of complex bathymetry. The present paper models such regions by a 
random array of mountains and dales, obtaining approximations of the normal 
modes of the system and assessing the effect of the presence of other mountains on 
the modes of a given mountain. As in the case of an isolated mountain, these normal 
modes determine the evolution of the linear system. This evolution should closely 
approximate numerical integrations (e.g. those of Bretherton & Haidvogel 1976) of 
the full nonlinear equation over strong (i.e. S much greater than unity) random 
topography. 

In the following sections we determine the normal modes of a single mountain in 
an infinite random array of non-overlapping, finite mountains of area fraction c much 
less than unity (i.e. the change in the single-mountain mode due to the presence of 
the other mountains). We do not consider bulk oscillations of the whole system, as 
this topic is to be discussed elsewhere. For this bathymetry all contour lines are 
closed curves. Solutions with this constraint relaxed are discussed elsewhere. 

Results from classical wave-scattering theory are not useful in this limit. 
Topographic waves cannot exist over a flat ocean floor, unlike electromagnetic and 
acoustic waves, which can travel in an unperturbed medium and are scattered by 
inhomogeneities. One way of avoiding this problem is to consider small random 
perturbations to existing topography (Thomson 1975) ; such techniques have been 
reviewed by LeBlond & Mysak (1978). However, in this study we consider a limit 
where the random perturbations are order-one occasionally, so retaining the 
nonlinear dependence on topography. 

Section 2 considers briefly the well-known solution for a single mountain on an 
infinite plain, introducing the notation used in the many-mountain problems. 
Section 3 presents an approximate solution to the two-mountain problem, showing 
that the strongest resonance occurs between a mountain and dale of equal and 
opposite heights. The field seen by one mountain due to a second appears to rotate 
in the opposite direction to the natural mode of the first and thus lies far from 
resonance. The exact solution for the two-mountain problem, given in Appendix A, 
shows the approximate solution to be accurate to within 0.5% for mountains 
separated by more than one radius. Section 4 gives the results for an infinite random 
array of mountains, introducing the idea of an effective topography to describe the 
structure of the ensemble-averaged stream function in the neighbourhood of a given 
mountain. The results are discussed in $ 5 .  

The linear barotropic potential vorticity equation for small fractional height H is 

(1) 
usually written 

where a($, H )  = $ x H y - $ y H x ,  $(x, y) is the stream function for the flow, t is time, 
V is the two-dimensional gradient operator and x, y are horizontal Cartesian 
coordinates. For the analysis to follow it is convenient to  recast this in the 

V2$, + a(+> H )  = 0,  

coordinate-free form V *  (V$, - K$) = 0, 

where K is the divergence-free vector field of contour lines of the topography. In 
terms of H ,  K is given by 

K = V A ( H i ) .  (3) 
To find normal modes, suppose that all time-dependent quantities are proportional 
to eiwt, where throughout this study the imaginary part is appropriate for the 
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northern hemisphere, and the real part for the southern hemisphere. Then (2) 
becomes 

V-(iwV$-K$) = 0. (4) 
Note that the frequency is independent of the horizontal scale of the topography, 
depending solely on its height. For simplicity consider the mountain range to consist 
of a random array of circular hills and dales of unit radius having no interior 
contours. At the end of the analysis it will, however, be clear how this assumption 
can be relaxed, though doing so is likely to hide, rather than highlight, the essential 
physics. 

2. One mountain on an infinite plane 
To begin analysis of (4) consider the simplest possible system, namely a single 

mountain on an infinite plane, which is used as a building block for a system with an 
infinite number of mountains. There are two cases to consider: (i) with no ambient 
flow, and (ii) with a uniform, but rotating, ambient flow. 

Case (i) : consider a mountain of height H ,  a t  the origin. The governing equation 
(4) becomes 

( 5 )  

r is the distance from the origin, and d is the unit tangent vector to the contour 
(running anticlockwise). Since we are, ultimately, interested only in leading-order 
effects, the only solution of (5) considered is the dipole field, outside the mountain, 
as this is the simplest, non-trivial, wave for a one-mountain system. Thus the stream 

V-(-iwV$+K,$) = 0, 

where K, = H,d(r- 1 )  d, (6) 

where r is the position vector from the origin, 1 is a complex vector and A is the real 
amplitude of the wave, undetermined in the unforced problem since the governing 
equation is linear in the stream function. From (7) 

V$ = Ale T(r ) ,  (8) 

where 
r <  1, 

(1-2Ei)/r2, r 2 1. 
T( r )  = (9) 

The tensorial form of the field outside the mountain is a reflection in a line 
perpendicular to  i. Substituting (9) in (5) gives 

A(2iwi.l+Hod-1)6(r-1) = 0. (10) 

I =  (i-ig) eiWt, (11)  

Non-trivial (i.e. non-zero A )  solutions follow by taking 

and w = I&,. Here i and 9 are the unit coordinate vectors and 1 is a unit vector 
rotating at  angular frequency w .  The stream function outside the mountain is a 
rotating dipole field with temporal period 47c/H, -the topographic wave travelling 
round the mountain. 

Case (ii) : consider the same system, but in an ambient flow. The ambient flow of 
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interest later is that due to  another mountain or group of mountains ; so consider an 
ambient flow of the form 

where the frequency is supposed given (i.e. it is no longer an eigenvalue of the 
problem). Write the stream function as 

V @ +  = ( i - ig)  eiwt = 1, (12) 

@ = P+@', (13) 

where the prime denotes the perturbation to the ambient flow due to the mountain. 
The governing equation for this, the forced problem, is 

(14) 

( H o - 2 w ) A  + H o  = 0, (15) 

V.( -iwV@I'+ KO @'I +Ko. l  = 0. 

Look for solutions of the form (7). Then (14) becomes 

determining the amplitude, as a function of w / H o  alone, namely 

where the infinite response a t  w = L a o  results from forcing the system a t  its natural 
frequency. For future reference write the solution of the forced problem for a single 
mountain a t  x, of height H ,  with forcing 1 as 

V@(x; x,, H , ;  1) = A  - 1. T (x -x , ) .  

It is also convenient to let K, represent the contour of this mountain. 

3. An approximate solution to the two-mountain problem 
As a further simplification in later analysis assume that mountains are sufficiently 

separated to allow a far-field approximation to their interactions. Thus consider the 
two-mountain problem solely in this large-separation limit in this section. An exact 
solution to the two-mountain problem is presented in Appendix A where it is shown 
that the large-separation solution is accurate within 0.5 % even for mountains 
separated by as little as one radius. 

The governing equation for the unforced two-mountain problem is, from (4), 

iwVz@ = KO - V@ i- Kl - V@. (18) 

To solve this approximately, consider the following problems : 

and 

iwV2$, = K,.V@,i-Ko.l 

iwV2@, = K,*V$,+ Kl.V$o(xl), 
where each mountain is considered to be forcing the motion about the other 
mountain. To close the calculation, we require 

1 = V@,(O). (21) 

The approximate solution, defined in this way, is symmetric under swapping labels. 
In terms of the general solution of the one-mountain forced problem, (21) 
becomes 
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where mn is a shorthand for (xn, H n ) ,  referred to as simply the nth mountain (with 
m, always a t  the origin). The leading-order field at m, due to m, is 

1, = A  - 1. T (x , )  (a 
where rl is the hill-centre separation. Vector 1, is the reflection of 1 in a line 
perpendicular to 2, multiplied by a factor A ( w / H , )  ry2 ; thus I ,  rotates with the same 
period but opposite direction to 1. To leading order, the effect of m, is to generate an 
additional uniform field a t  m, given by 

For a free oscillation (in a two-mountain system) consistency requires 

i.e. the only forcing a t  m, and m1 is due to their interactions. Thus 

where rl is the separation of the mountain centres. Using (16), the frequency is 

where the error term is of the order of the curvature of the stream function of m, over 
m1 - the first effect not included in the approximate two-mountain solution. 
Provided H I  is not equal to -H, ,  the roots are 

where the first corresponds to a wave centred above mountain 0, and the second a 
wave centred above mountain 1.  If, however, H ,  is equal to -H,, each mountain has 
a natural frequency, in isolation, equal and opposite to the other. The system cannot 
ring a t  the natural frequency of either mountain as the stream function must be 
finite. Each mountain detunes the other, by either raising or lowering the frequency, 
giving frequencies 

The dependence on mountain separation is stronger in the resonant case (see also 
Jansons & Johnson 1988). 
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4. Systems containing a large number of mountains 
In systems of more than two mountains, even without dales (i.e. mountains of 

negative height), it is possible to  have resonance. For example, in a system of three 
mountains that are all of the same height, a double reflection involving all the 
mountains causes a resonance in the last due to the forcing from the first, because the 
frequency changes sign twice. In this study we eliminate the hill-dale resonance by 
assuming that no dale is the exact inverse of the mountain a t  the origin, which is 
physically reasonable as deep dales are rare in the 0cean.j- Higher-order resonances 
do not affect the leading-order correction to the one-mountain solutions, although 
they do change the asymptotic structure of higher-order terms. For a discussion of 
resonant modes and beating linear combinations of such modes, leading to  slow 
energy transfer between group of mountains, see Jansons & Johnson (1988). 
Resonant modes are expected to be important in bounded regions, for example lakes 
and coastal regions, and in numerical experiments in periodic domains. 

Consider a large array of mountains separated sufficiently to allow the far-field 
approximation to mountain-mountain interactions. (From the exact solution, 
Appendix A, it  is, in practice, sufficient that no two mountains are closer than one 
mountain radius.) We are interest in determining the leading-order change in 
behaviour of the mountain a t  the origin due to the presence of other mountains. It 
is not necessary to consider the higher-order effects of interactions between the other 
mountains.$ We thus determine the frequency of the modified normal mode by 
adding all contributions to the forcing of the mountain a t  the origin as in the two- 
mountain problem. The equation corresponding to (25) for the two-mountain 

N 
problem is 

f .T(xi)*T(-xi) .  
i=l 

The derivation of (30) is considered again when the stream function for this system 
is determined (see (40) and (41)). Substituting (16) in (30) gives 

i - -=  x i+-  r ; 4 + ~ ( r ; 6  , 
Ho 2w i-1 [( 3’ 11 

where ri = 1 . ~ ~ 1 .  Provided that the frequency of interest is not a double root (i.e. 
assuming that resonances have been avoided), the leading-order correction to the 
natural frequency of the mountain a t  the origin follows by substituting the zeroth- 
order approximation to  the natural frequency of m, into the right-hand side. This 
gives 

In the same way we can determine the ensemble-averaged frequency of an infinite 
system of mountains, again assuming a far-field approximation to  the interactions. 
Replacing N by infinity in (32) and taking an ensemble average over all systems that 
have a mountain identical to m, a t  the origin gives 

t A specific example is a range of mountains with normalized heights distributed uniformly in 

$ The term ‘other mountains’ is used to denote the mountains not at the origin. 
[ - 1, 101 with the test mountain chosen as any hill of height greater than unity. 
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where the subscript 0 a t  the bottom of the ensemble-average bracket indicates that 
all subscript-0 quantities are taken as constants in the averaging. Although it is 
straightforward to consider systems where there is a correlation between heights and 
positions (i.e. through a joint probability density function), the number of parameters 
in the model is less for systems where they are independent, and leads to more 
succinct results. Then 

The ensemble average of the sum in (34) can be replaced by an integral, namely 

( i!l r ~ ~ ) ,  = Jr-4 P(r I 0) 2nr dr, (35)  

where P(r l0 )  is the probability density of finding another mountain a t  distance r 
given that there is already a mountain a t  the origin. The ensemble-averaged 
frequency is thus given by 

( o ) ~  = so( 1 - (&)o 10) 2nrdr+ ... , 1 
provided that the distribution of mountains leads to a convergent integral. This is so 
in the physically relevant case where the number density of mountains tends to a 
constant a t  large distances. The ensemble-averaged frequency is not a function of the 
orientations of mountains to each other but only of their separation, although the 
stream function a t  the same order does depend on orientations. 

Consider the special case where the pair probability density function is given 

0 ,  r < a ,  

n, r > a ,  
P(rI0)  = (37) 

where n is a constant number density and a is supposed to be much larger than the 
radius of a mountain and much less than the typical distance between mountains. 
Note that if the concentration of mountains becomes too large, near to close packing, 
the probability density cannot be considered to be given. For (36) and (37) we find 
that 

where c = nn is the area fraction of mountains. If all the mountains are 
approximately of the same height H (but not exactly to avoid changes in the 
asymptotic sequence caused by resonance in higher-order terms), (38) reduces to  

c 
( w ) ,  =@ I--+O -, c 2  ( 2a2 (:4 )) (39) 

Other height distributions can be treated similarly. 
Having determined the leading-order correction to  the natural frequency of a 

single mountain due to a random array of other mountains, consider the 
corresponding approximation to the stream function. Consider again a given 
realization of a finite array of mountains. We determine the modification to the one- 
mountain stream function due to the other mountains in the same way as for the two- 
mountain system (see (19)-(22)), but must consider the reflection of the mountain a t  

13 FLM 191 
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the origin in all the other mountains. Thus, in terms of the stream function for the 
one-mountain forced problem (17), the stream function for this system is 

N 

V + ( x ;  m,, ..., m N )  = V + ( x ;  m,;  I ) +  C V+[x;m, ;V+(x , ;m, ;Z) ]+  ..., (40) 
r=1 

where to close the solution we require that 

Using the explicit form of the solution (17) to the one-mountain forced problem, (41) 
becomes (30). 

Averaging over all realizations (which, in general, have different frequencies and 
phases), gives a stream function that is identically zero owing to destructive 
cancellation. Thus averaging is restricted to realizations that have not only a 
mountain identical to m, a t  the origin but also the same frequency and phase. 
Although it is possible to  work with (40), finding the ensemble-averaged stream 
function itself is not as instructive as finding its effective topography, which follows 
more easily from the governing equation. By the 'effective topography' for the 
ensemble-averaged stream function we mean that (non-random) topography 
generating a stream function identical to the ensemble-averaged stream function. 
The effective topography is not equal to the ensemble-averaged topography, since 
the governing equation is not linear in K .  

Consider the ensemble average of the governing equation (4) given that there is a 
mountain rn, a t  the origin and given that the frequency of the realizations considered 
is w and their phases are equal, namely 

iwV"@>,(x I w )  = <K*Vllr),(x I w ) .  (42) 

It is helpful to separate the fluctuating and average parts of the contour vector and 
stream function by defining 

E(xI m,; w )  = K ( x  I m,; o)-(K),(x I w )  

+'(x I m,; w )  = +(x I m,; w ) -  ( ~ ) , ( x  I w ) .  

<K)& I w) -V<+)o(x 10) + (K'*V$'),(x 14. 

(43) 

(44) 

(45) 

and 

The right-hand side of (42) becomes 

Before performing the averaging, note that, in general, the pair-probability 
density function and the height distribution are no longer independent or known 
a priori - only their ensemble average over all frequencies can be considered given. 
However, a t  the ensemble-averaged frequency, these distributions coincide to 
leading order with those for the unconstrained system. This follows from considering 
an expansion about the ensemble-averaged frequency and noting that the average 
over all frequencies is that for the unconstrained problem. The relative error is then 
O(c2/a4), since the first correction has zero mean by construction. Restrict attention 
to ensemble averages over realizations with the ensemble-averaged frequency and so 
consider 

iwV2<$)o(xl <w) , )  = ( (K) , .V($)O+ <K'.V+'),) (x I ( w ) , ) .  (46) 

In (46) the frequency belonging to the differential operator remains as an eigenvalue 
of the problem. When the equation is solved, this becomes the ensemble-averaged 
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frequency to the degree of approximation considered. This gives a consistency check 
on the analysis as this frequency has already been determined in (36). 

To obtain the leading-order correction to the stream function, approximate the 
fluctuating part of the stream function as a sum of 

for each mountain m,, neglecting the interactions between the other mountains. The 
right-hand side of (46) can be written as a contribution from the mountain a t  the 
origin and an integral: 

KO. V<$),(x I <w)o) + 1 {(K-Ko),(x I x, ; (w)o )  * V($>O(X I ( w ) , )  
/ z - q  < 1+ 

+ (K'.V$'),(xI x,; (w)o))P(x1IO) d2X,, (48) 

where P ( x ,  10) is essentially the same function as in (37), modified to allow the pair 
distribution to be non-axisymmetric. This does not affect the frequency to this order 
of approximation, but does change the stream function. From (10) and (47), to 
leading order 

(K'-V$'),(x I x,; ( w ) , ) =  ( H , A  ( -- ~;y )ov~$)o (x l  (o),).K(x;x,, I ) ,  (49) 

where K ( x  ; x,, 1) is a unit contour centred on x,. Over the range of integration, which 
excludes the mountain a t  the origin, 

(K-Ko),(xIx,; (w)o)'V($)o(xl (w)o )  = ( H , ) o ~ ( x ; x , ,  1).V(v+)o(xI <@),I. (50)  

Summing (49) and ( 5 )  and substituting the zeroth-order approximation for the 

The integral in (48) thus reduces to 

with (53) 

giving the effective topography due to the other mountains for the ensemble- 
averaged stream function. This topography is the same as if all other mountains were 
of height H , ( H , / ( H , + H , ) ) ,  and the topography were ensemble averaged. The 
governing equation for the ensemble-averaged stream functtion is 

iwV2<$)o(x I <w>,) = [KO@) + 4 4 1  'V<$)O(X I <w>,).  (54) 

From (53) it follows that when m, represents a hill (i.e. a mountain of positive 
height) then not only mountains but also dales deeper than it is high give a positive 
contribution to the effective topography. Shallower dales give a negative con- 
tribution. Thus an effective topography can be high due to large numbers of deep 
dales as well as mountains. 

13-2 
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A check on the above analysis is given by determining the ensemble-averaged 
frequency from (54) direct for a distribution of mountains described by ( 3 7 ) .  The 
effective topography due to the other mountains in this special case is essentially a 
step from zero height to height 

(55 )  

at  a distance a from the origin, and then constant height to infinity ; that the change 
in height is not sharp but occurs over unit distance is negligible to the order of 
approximation considered. To this order of approximation, J is given by 

h = cHo (-) HI 
Ho+H, 0 

J(x) = h&((x( -a) &). 

A straightforward calculation (in Appendix B) shows that the eigenvalue 

(1 -2) (1 +?) = a-2. 

Thus the frequency closest to the natural frequency of this mountain in 
is 

(56) 

satisfies 

(57 )  

isolation 

(58) 

in agreement with (38) as required. The other root of (57), which represents a wave 
running round the step at distance a from the origin, gives no information about the 
ensemble-averaged stream function, since we assume throughout that  the frequency 
is close to the natural frequency of m, in isolation. 

5. Discussion and conclusions 
The barotropic potential vorticity equation or topographic wave equation is not 

linear in topography ; the solution structure for topography formed from a sum of 
obstacles is not the sum of solutions for the obstacles in isolation, even when these 
individual solutions have identical frequencies. This is demonstrated explicitly in 
Appendix A, which presents exact solutions for the normal modes above a pair of 
circular seamountains. These solutions also show that the interaction between the 
mountains rapidly approaches the large-separation approximation, derived in 8 3 by 
considering solely the first reflection of the disturbance of one mountain a t  the other. 
For mountains a diameter apart, the approximation is accurate to within 1 YO. 

With this assurance, the effects on the dipole mode of a given mountain, of an 
infinite set of randomly distributed neighbours none of which is closer than a distance 
a,  much greater than unity, are obtained in 94. The ensemble-averaged frequency for 
a mountain of height H ,  is given by 

where c is the area fraction of mountains. The idea of an effective topography is 
introduced to describe the ensemble-averaged stream function. As expected, this 
differs from the ensemble-averaged topography. 

Although a is taken to be large in the analysis, the accuracy of the approximate 
solution is such that the results are likely to be good even for order-one a. The 
dependence on a can be removed entirely by using the exact solution of Appendix A 
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in the analysis of $4, although many of the integrals would then require numerical 
evaluation and the sole effect would be to replace the factors a-2 by numbers. 

Even though the analysis is confined to mountains approximated by right circular 
cylinders, the solution structure reflects that expected for more general shapes. For 
small area fractions of mountains, dipole interactions dominate and it is the dipole 
strength that is taken as the randomly distributed variable in this analysis. 

The authors intend to generalize the current theory to consider random arrays of 
mountains on a P-plane and to add open contours to allow travelling topographic 
waves, and investigate large-scale oscillations of the whole system. 

Appendix A. Normal modes for the two-mountain problem 
Consider the topographic wave modes for the two-mountain system without the 

restriction of $ 3  that the mountains are widely separated, by exploiting the 
invariance of equation (1) under conformal mappings (Johnson 1985, 1986, 1987). In 
particular, the mapping 

c + i e  = 2 tanh-l [(x+iy)/a], (A 1) 

for a a constant real parameter, leaves (1) invariant and introduces the bipolar 
coordinate system (t, 0) with 

01 sinh 6 a sine 
coshc+cosO’ = cosh[+cosO’ 

X =  

Lines of constant 8 are circles passing through (fa, 0), and lines of constant 6 are 
circles centred a t  (a coth (, 0) of radius a cosech (. These latter circles can be chosen 
as bottom contours. Attention is restricted to a pair of right circular cylinders for 
direct comparison with the results in $3, although continuous depth profiles can be 
considered analytically (Johnson 1986, 1987). 

Let the boundaries of the cylinders be given by 6 = 6, and < = El with 6, < 6, (this 
includes the case of a cylinder near an infinite rectilinear escarpment, i.e. go = 0), and 
let their corresponding heights be H ,  and H,. Transformation (A 1 )  maps the plane 
to the infinite strip - KI < < 00,  0 < 19 < 27c. As in Johnson (1985) the governing 
equation reduces to Laplace’s equation with the dynamics contained in jump 
conditions above the discontinuities in depth, namely 

VZ$ = 0 ( E  * t o ,  E l ) >  (A 3) 

and [$&I +H,  $0 = 0 (6 = t o ) ,  [$‘stl-H, lclf? = 0 (6 = f [ A  (A 4) 

and fi continuous throughout, where square brackets denote the jump in the 
enclosed quantity. Look for normal modes of the form 

11. = Re(F(6) exp(iwt+im@)). (A 5) 

WitKout loss of generality m can be taken as strictly positive. Moreover, for solutions 
single-valued over. the whole plane, $ is periodic in 13 of period 2 ~ .  Thus m is a positive 
integer: The reduced problem for F is 

F”-m2F = 0 ( E  + to, E l ) ,  (A 6) 

o [ F ’ l + ~ , m ~  = o (6  = to),\ 
w[F’]  - H ,  mF = 0 (6  = 6,) 
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with F continuous throughout. Hence F can be taken as purely real and ( A 5 )  
becomes 

The solution of (A 6) and (A 7) is given by 

$b = F(5)  cos (mO+wt). (A 8) 

exp [9n(6-60)1 (6  G 501, 

(60  G 5 G 5 A  HO 
eXP[m(5-Eo)l-w sinh [m(t-to)I 

provided w satisfies the dispersion relation 

(1 -2) (1 +!$) = p 4 m  

where 

Written in this form (A 10) for the dipole mode (m = 1) is completely analogous to 
( 2 7 )  giving the approximate solution. 

A number of cases are of interest. The second mountain is absent when H ,  = 0 and 
all modes, irrespective of their azimuthal structure, have frequency lao, as expected. 
For non-zero H,,  the presence of the second mountain splits the previously 
degenerate modes. This splitting becomes negligible as the mountain separation 
approaches infinity and the modes are again degenerate, having frequencies of lao 
and --I&, depending on which mountain they are concentrated over. 

For two mountains of the same height the frequencies differ only in sign, 
namely 

Each mode is concentrated above a single mountain and the disturbance propagates 
around this mountain with shallow water to its right. One mode for this is illustrated 
in figure 1. The other mode can be formed by rotating the figure by n. The amplitude 
of the motion varies with position having its maximum between the mountains. The 
phase speed varies also, being slowest between the mountains and fastest on the far 
side. As the frequencies of both modes are of equal magnitude, another normal mode 
is formed by any linear combination of these two waves. This degeneracy is broken 
by any inhomogeneity in the system, in particular by the presence of a third 
mountain (Jansons & Johnson 1988). 

For a mountain and an equal and opposite dale (i.e. H ,  = - H o ) ,  both of which in 
isolation support oscillations of frequency $Ho, interaction splits the resonance to 
give 

Figure 2 gives the streamline patterns for the higher frequency when disturbances 
propagating round the bottom contours are in phase. Figure 3 shows the patterns for 
the lower frequency when the disturbances are out of phase. Once again the 
disturbance is largest and slowest moving between the mountains. The existence of 
two close frequencies allows beating solutions, slowly transferring energy between 
the hill and the dale. Such solutions are discussed by Jansons & Johnson (1988). 

P = exp [%, - t o ) ] .  

(jJ = *idO( 1 - p - 4 9  (A 11) 

0 = gJo(l +P-"") (A 12) 
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FIGURE 1. The streamline pattern for the lowest-order, dipole, mode concentrated over one of a pair 
of unit radius mountains of equal height. A second mode of the same frequency is obtained by 
rotating the figure by n. Negative values are dashed and bottom contours dotted. The patterns are 
shown a t  one-eighth-period intervals. The sequence can thus be continued by appropriate 
reflections. The pattern succeeding ( c )  is given by reflecting ( b )  about the line of centres and 
changing signs. The pattern succeeding this is given by changing signs in (a) and so on. These 
illustrate the rapid propagation of phase on the far side of the mountain and the slower propagation 
between the mountains. 

FIGURE 2. As in figure 1. but for a mountain and dale of equal and opposite height. These patterns 
are for the higher-frequency mode when disturbances propagating round the depth discontinuities 
are in phase. 

\ 
\ 

, 
/ 

/ 

FIGURE 3. As in figure 2, but for the lower-frequency mode when the disturbances are out 
of phase. 
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FIGURE 4. The frequencies of the normal modes of two mountains of unit radius as a function of 
D ,  their separation at nearest points scaled on a diameter. (a)  The positive root for two mountains 
of unit height for 0 < D < !. There is an equal and opposite negative root. ( i )  the limiting value a t  
infinite separation, w = $; (ii) the approximate form (A 15); (iii) the exact form (A 10). ( b )  As for 
(a )  but for a < D < 1. The vertical scale is highly magnified to show the exact form approaching 
the approximate before their joint approach to the limiting value. (c) The two roots for a mountain 
of unit height and a mountain of unit depth. The exact form approaches the approximate while 
both still differ significantly from the limiting value. 

For the case considered in the main text, of mountains of unit radius with centres 
separated by a distance d,  say, 

to = -cosh-' ( i d ) ,  = c0sh-l ( i d ) ,  a: = [($!)2- 11; (A 13) 

and 

Thus 

or 

P = e x p ( & )  =$d+[(+d)2-1]6 

= d+d-'+O(d-3). 
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as obtained already for the dipole mode ( m =  1) in (28). Figure 4 ( a )  shows the 
positive root for o as a function of D, the distance between closest points expressed 
in diameters, for 0 < D < a for the dipole mode of two mountains of unit height. 
Curve (i) gives the value for w = t for an isolated mountain, curve (ii) the 
approximate form (A 15), and curve (iii) the exact expression (A 13). By D = 0.01, 
an almost imperceptible separation, the frequency has already increased to  60 YO of 
its limiting value. Figure 4(b )  gives the same curves for a < D < 1, on an expanded 
scale, showing by D = a difference of less than +YO between the approximate and 
exact values. The approach to the asymptotic form of higher modes (i.e. m 3 2) is 
even faster. 

For the case of resonance (i.e. H ,  = - H o ) ,  that  is, a mountain and a dale, 

w = glo[ 1 f d-2m + O(d-"-2)], (A 16) 

which gives (29) for the dipole mode. Figure 4 ( c )  shows the limiting, approximate and 
exact values of o as a function of D. The approach to the limiting value is slower in 
this case, but once again the approximate form is highly accurate, being within 1 % 
b y D = l .  

Appendix B. Two concentric circles 

circles by the transformation 
The solution constructed in Appendix A is mapped into that for two concentric 

7+ia = exp((+iB). (B 1) 

For an inner circle of radius unity and an outer circle of radius a (so 6, = O , g ,  = log a 
and /3 = a;), (A 10) becomes 

as quoted for m = 1 in (57). This result can of course be derived directly using polar 
coordinates. 
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